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The force on a prestressed body in a curved space 

E Pechlaner 
Department of Mathematics, Simon Fraser University, Burnaby 2, BC, Canada 

MS received 29 June 1972, in revised form 14 November 1972 

Abstract. Exploring some aspects of the linearized theory of general relativity, we discover 
new possibilities for experimental tests. A new design for a gravitational wave detector is 
suggested. The starting point of these investigations is a part of newtonian mechanics whose 
study helps to understand some of the puzzling features of general relativity. The approxi- 
mations made are as numerous and as severe as in most similar investigations. 

1. Introduction 

We study the motion of bodies which are assumed not to influence the metric. This 
assumption is essential, as I know of no method to solve the general two-body problem 
of general relativity. On the other hand, the equations which govern the motion in a 
given space according to general relativity or newtonian mechanics can be solved by 
numerical methods. This, however, does not provide much physical insight. We 
therefore proceed along a different path and assume that all spaces involved are almost 
flat and that coordinates are chosen such that 

for all i. k .  

where g , k  is the metric tensor and 6,, is the Kronecker delta. We also assume that the 
diameter of the test body or test particle is small if compared with the radii of character- 
istic curvatures of the given space. These assumptions allow us to give physical meaning 
to a total force acting on the test body. This force has, of course, no tensorial invariance 
(see Synge 1964 for a discussion of related topics). The manner in which this force is 
influenced by an initial stress is studied in the present paper. The initial stress ofan elastic 
medium in space-time is considered in a work by Papapetrou (1972). 

The spaces considered in $5 2,3 and 4 are of dimensions 2,3 and 4, respectively, with 
signatures 2, 3 and 2, respectively. Greek suffixes take the values 1, 2, 3, Latin suffixes 
1, 2 in $ 2 and 1, 2, 3, 4 in $ 4  with the summation convention in each case. Partial 
derivatives with respect to the coordinates are indicated by commas (eg p , ,  = Sp/dx,). 
We use real time, x4 = t ,  and the units are chosen so that the gravitational constant and 
the speed of light are both unity. 

2. Motion of a particle on a surface according to newtonian mechanics 

Under no applied force, a particle on a smooth surface with metric gmn(xk) moves along 
a geodesic with constant speed. If, however, the particle of unit mass is under the in- 
fluence of a force with potential w ( x k ) ,  then the particle describes a geodesic in the 
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configuration space with metric 

am,, = (H - W g m n  dx, dx,, (2) 

where H is the constant total energy of the particle. The particle does follow a geodesic 
but not on the actual surface (Synge and Schild 1966). 

We now apply these results to the motion of an elastic membrane on a smooth 
surface. The potential energy of the membrane (the ‘particle’) is equal to its elastic 
strain energy and depends on the intrinsic geometry of the unstrained membrane, and, 
in addition, on the intrinsic geometry of its location on the surface. Such a particle will 
move along a straight line in the flat part of a surface; in the non-flat part, however, its 
trajectory will deviate from a geodesic. A ‘particle’ with non-zero diameter traces out 
a strip rather than a line. When we say that the particle does not follow a geodesic, we 
mean that there does not exist a geodesic lying entirely within the strip. 

3. Force on a prestressed solid in a curved three-space 

We now adapt the results of $ 2  to a curved three-space. We are again dealing with 
newtonian mechanics-except for the space being curved ; but now, instead of using a 
configuration space as in (2), we try to obtain the force acting on the isotropically elastic 
solid. This modified approach will facilitate comparison between the results of $ 3 and 
$4.  We assume that the body, brought to rest in flat space, is prestressed or ‘self- 
straining’ (Southwell 1969). This means that in euclidean space E, the stress tensor 
q&,) of the body satisfies 

L p , p  = 0 throughout the body, ( 3 4  

TRpnp = 0 on the boundary, (3b)  

but T , ~  # 0 for some U, p. Here np is the normal vector to the surface bounding the body 
and the z ,  are rectangular Cartesian coordinates. We think of the coordinate axes as 
fixed in the body and take the centroid as origin. Equations (3a) and (3b) express absence 
of body and surface forces, respectively. Associated with T , ~  is the strain tensor cap 
given by 

‘,p = ((1 +47,p-~aS,pr,,}E-1 (4) 

where the constants E and t~ are Young’s modulus and Poisson’s ratio, respectively. 
We assume that the initial stress T , ~ ,  although small, is large if compared with the 
changes in stress produced by placing this body in the given curved space. This assump- 
tion not only makes the calculations much simpler, but also makes the results more 
interesting. To obtain the stress of the body in this space, we first consider two related 
problems. 

(i) For every simply-connected isotropically elastic body which is self-straining in 
E,, there exists a riemannian three-space V, in which this body is stressless. If the self- 
stress satisfying (3) is denoted by oap,  this space has the metric tensor 

gap = 6 a p  + 2Yap 

yap = ((1 + c ) o , ~ - o ~ S , ~ ~ , , } E -  ’. 

(5) 
where 

(6) 
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(ii) The inverse problem-knowing V, in which the body is stressless, and finding 
the self-stress it has in E,-is slightly more complicated. Having gab, we cannot assume 
gap equals g,, + 2ya, ; assuming an infinitesimal coordinate transformation 

(7) xz -+ xa + 4,Jxp) 

gap = &, + 2Ya, + 4, , ,  + 4 p , ,  . 

has been made, we only know that 

(8) 
Now let us bring the body, whose self-stress in E, is T ~ , ,  into V, of (8) (and let the 

location be the one in which a body of the same shape but with self-stress oap in E, is 
stressless). The stress Tap of the body in this location is not unique because generally 
the body would move unless constrained. The constraining forces, however, are small 
under the assumptions made, and we have 

T,&J Lp(Z,(X,)) - ozp(x,)> (9) 

where the components of o,, are much smaller than those of t,,. The relation between 
z, and x, is linear and corresponds to a translation and a rotation of the body. If there 
is no rotation or if zap is spherically symmetric, we will have 

x, = z,+x,, (10) 
where the X, are the coordinates of the centroid of the body. Associated with 
the strain tensor 

is 

(11) 
in 

Ea, = €2, - i ' z p .  

The total strain energy of an elastic body is defined by (we can ignore (det gap)' 
the integrand) 

W(X,, . . .) = r 2 SJJ E a ,  ~p dx1 dx, dx, 3 (12) 

where the integration is carried out over the domain 3 occupied by the body. Generally 
and E,, and W, depend not only on the position of the centroid, but also on the 

orientation of the body. For simplicity, however, let us assume that the orientation is 
unimportant and, therefore, W = W(X,); this, for instance, is the case if tap exhibits 
spherical symmetry. Since the space is almost flat, we can give physical meaning to a 
total force F ,  defined by 

B 

F,(X,) = -a w(x,)/ax, .  (13) 

T,pEm, = ~ z p 6 . p  - ~ a p ~ a p  - o a ~ ~ a p  + G a p Y z p .  (14) 

The contribution to W of the last term is negligible, whereas the first term will give a 
large, but constant, contribution. Applying (4) and (6), we find 

From (9) and (1 1) we have 
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Using (10) and (8), this transforms to 

P 

Using Green's theorem and (3), we find, finally, 

that is, the total force can be found without knowledge of 5,. 

4. Force on a self-straining body in general relativity 

We now consider the same problem from the standpoint of general relativity and assume 
that, in the almost-flat four-space with metric g i k ,  there is a body (eg the antenna) which 
does not influence the metric. We again assume that the body is prestressed and has in 
flat space a stress tensor z,~ satisfying (3). The matter tensor of the test body, although 
not satisfying Einstein's equation, is supposed to satisfy the so called equations of motion 

(17) Tik ~k E Tikk + TkkTmk + rk,kTim = 0, 

where the rg, denote Christoffel symbols of the second kind. 
We now formulate our problem as follows. Assume we have knowledge of T i k  (and 

thus of the motion) for a test body lacking large initial stress. Suppose we have another 
test body with the same shape, initial position, initial velocity, etc, except for a large 
initial stress T ~ ~ .  We then ask which external force do we have to apply to the second 
body so that the second body, in spite of the difference in stress, has the same world- 
tube as the first body? In order to keep the complexity of the representation down, we 
assume that the velocity of the test body is small. There is, therefore, no need to introduce 
Lorentz transformations of z,~, and this will facilitate comparison of our results with 
(16). Let Sik denote the matter tensor of the second body. We have 

(18) 
with zi4 Y 0 and the components off ik  small in comparison with T i k .  Note that f i k  is 
not unique; it will depend on the way the constraining external force is applied. From 
(18) we find, with 

Sik  E Tik + T&,, x4) +fik 
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I t  is plausible to interpret - f i  as the density of the external force which is required in 
order to keep the second body on course. We have 

- f V  = r;pLp + l-;cT,,p k , , p  + g,,., - gzp,V)Lfl + - g44.p)5,1' ( Z l u )  

(21b)  4 -.f = C p % p  = - k 4 . p  + gp4,ix - gofl .4)Txfl .  

Defining the total external force K i  by 
P P r 

we find, using Green's theorem and (3), that 

J Y  

and, in addition, K i ,  but not f ; ,  is invariant under infinitesimal coordinate transforma- 
tions x i  + x i  + ti(xj). 

Comparing (23) with (16) we find that 

F, = - K , .  (24) 

This means that under the assumption made, newtonian mechanics and general relativity 
give the same force ; the minus sign in (24) results from defining K i  as a reaction. The 
component K4, which indicates a changing mass of the test body, is obviously zero for 
the type of metric assumed in 4 3. There we had to restrict ourselves to time-independent 
metrics in order to be able to define a potential energy. In 4 3 we also assumed that test 
bodies are made of elastic material, whereas no such assumption was made in 4 4. We 
actually could derive (16) for more general materials (for details see Biot 1965). 

We obtained + K i  as the external force which we have to apply in order to give the 
self-strained test body the same world-tube as the unstrained body. But we are likely 
to assume in most applications that - K i  is equal to a perturbing force acting on a self- 
straining body and producing minor deviations of its world-tube from the world-tube 
of the unstrained test body. Self-consistency requires, of course, that changes in motion 
resulting from K i  turn out to be minor. To get the motion, we treat Ki  as a force in 
flat space, and will therefore use Newton's law of motion or a relativistic analogue. 

5. Possible tests 

To facilitate estimation of the magnitude of K , ,  we expand gap,"(xi) in (23) in a Taylor 
series about the point x, = 0, and get thus 

However, it follows from (3) that 

The first two terms on the right-hand side of (25) are therefore zero and the lowest term 
in the expansion of K ,  is proportional to the third derivative of g m o .  (This should not 
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come as a surprise-a prestressed membrane on a sphere (R1212  = constant; ggb,nm # 0, 
gab,nms = 0) will obviously not move; ie K ,  = 0 in this case.) See Appendix 1 for an 
example. The force between two self-straining bodies resulting from self-strain is 
therefore almost always much smaller than the force between the two masses of Weber’s 
antenna, (Weber 1960, Madore and Papapetrou 1971) which is proportional to the 
second derivative of g a b .  

Let us now, however, investigate the forcef, which is acting on a part of a prestressed 
body. The results of Q 3 are easily adapted to this problem. Equations ( 3 ) - ( l l ) ,  (14)  and 
(15)  remain unchanged. Replacing, in (12), the domain $3 by the subdomaind occupied 
by the part of the body, will give the strain energy w of this part. Proceeding as in 
(13)-(16b), we find 

There exists, however, no equivalent of (16c). We therefore have to find 5 ,  in order to 
findf,. An example for this is given in Appendix 2. Equations (26)  are no longer true 
if 9 is replaced by d, and thereforef, is proportional to the first derivative of gmp-for 
a certain coordinate system. (This should not come as a surprise-tidal forces would 
depend on the first derivative of the newtonian potential if positive and negative masses 
would exist ; but positive and negative stresses do in fact exist.) 

Assuming that a similar result is true for a prestressed body in the field of a plane 
gravitational wave (see (43)) with frequency 0, we find that a single cube of length 100 cm 
made of titanium alloy with a self-stress close to the ultimate strength is better than 
Weber’s antenna if w < s -  l .  Here we ignored questions of resonance and com- 
pared only the ‘driving forces’. It is, however, not certain that periodic waves are 
responsible for the observations made by Weber. Colliding bodies, for instance, produce 
a wave for which the g, have approximately the shape of a step function. The time 
integral over f, would then be non-zero, whereas the time integral over forces which 
depend on gab ,& would vanish. A prestressed body might therefore be a better antenna 
for such waves. 

Where else might we expect detectable effects of the self-strain? The ratio of initial 
stress to mass density might be large in elementary particles, their world-line therefore 
might deviate somewhat from a geodesic. Electrons which are quite large (their Coulomb 
field included) are prime candidates (Witteborn and Fairbank 1967). 

Appendix 1 

Suppose the self-straining cube with self-stress 

711 = -2kx2x3(a2-x: )2  

T , ~  = 2 k x l x 3 ( a 2  -x:)(a2 - x i )  
T I 3  = 2 k x 1 x , ( a ~ - x ~ ) ( a 2 - x ~ )  

2 2 3  = k(a2 - 3x:)(a2 - x : ) ( a 2  - x : )  

and boundary 

x 1 . x 2 , x 3  = f a  
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is in V, with metric (a plane wave solution of Einstein's linearized equations) 

ds2 = dx: + dx: + dx: -dx: + 2 dx3 dx4A COS O ( X ~  - x,). 64.3) 

From (23) we find 

K 2  = K ,  = 0, 
+ a  

- a  

('4.4) - - -- 3 9 2 ~ - 2 ~ k a 6  s i n ( ~ ~ ~ , )  ((3 - u 2 0 2 )  sin o a  - 3uw cos o u } .  

We get, for o a  << 1, 

K 1 - - - -03Aku'  135 sin ox,  + O(05).  ('4.5) 

Appendix 2 

Let the metric of a V, be given by 

g l l  = 1 + i R ( x i - 2 ~ : ) ;  g22 = ~++R(x: -~x: ) ;  g,, = 1 ++R(x:+x:); 

g12 = SRx,x2; g13 = -$Rx~x, ;  g23 = - ~ R x ~ x , .  (A.6) 

Given that an  elastic sphere of radius A is stressless in this V, if its centre has coordinates 
xu = 0, find the strain y a p  of this sphere in E,. It follows from axial symmetry of g,, that 

where r2  = x: +x:. The functions S and T are found from the following system of 
equations : 

&a, = ga, -a%, - 4 a J  - 4/? ,z  

cap , /?  = 0 

capllp = 0 for r 2 + x i  = A2.  

A lengthy calculation gives 

S = R(114B+42)-'{3A2(3B+ 1)-(22B+4)x:-(B+ l)r2} 

T = R(114B+42)-'{ -6A2(3B+ l ) x , + ( 2 B + 2 ) x ~ + ( 2 3 B + 5 ) x 3 r 2 } ,  
('4.9) 

where B = a/(l-2a). The strain is thus found. 
Metric (A.6) was obtained from the linearized Riemann tensor 

PI,,, = -2P,, , ,  = - P 2 3 2 3  = 2R 2mdC3 = constant, (A.lO) 
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by use of the formula 

(A.11) 

These values for Papya in turn were chosen because they coincide at x ,  = 0 with the 
linearized Riemann tensor calculated for the space-part of the linearized Schwarzschild 
metric ; namely 

gZp = 8 a B + 2 m { r 2 + ( ~ g + d ) 2 } - 1 / 2 .  (A.12) 

The aZB of (A.8) might therefore describe the changes in the moon’s self-stress which 
are produced by moving the moon from an earth-moon distance a’ to flat space. 
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